
Should	we	stop	writing	design	patterns?					Page	-	1	
 

    

Should	we	stop	writing	design	patterns?	
REBECCA	WIRFS-BROCK,	Wirfs-Brock	Associates	

This	 essay	 reflects	 on	my	experiences	of	 the	past	 15	 years	writing	 software	design	patterns	 and	posits	 that	 if	 the	patterns	 community	
wants	to	broadly	increase	pattern	literacy,	relevancy,	and	long-term	impact,	some	things	need	to	change.	Those	changes	need	to	start	with	
pattern	 writers—like	 me.	 Instead	 of	 indiscriminately	 writing	 ever	 more	 patterns,	 we	 should	 focus	 more	 on	 connecting,	 relating,	 and	
refreshing	 the	abundance	of	 existing	 impactful	patterns.	Changes	also	need	 to	be	made	 in	how	we	 the	 community	of	 long-time	pattern	
authors	and	advocates	present	and	promote	patterns	to	the	rest	of	the	world.	

Categories	 and	 Subject	 Descriptors:	 •	Software	 and	 its	 engineering~Software	 design	 engineering	 		 •	Software	 and	 its	
engineering~Software	design	tradeoffs			•	Software	and	its	engineering~Design	patterns	

ACM	Reference	Format:	

Wirfs-Brock,	R.	27th	Conference	on	Pattern	Languages	of	Programming	(PLoP),	PLoP	2020,	Oct	12	-16,	2020,	11	pages.	

1. INTRODUCTION	

This	 essay	 reflects	 on	what	 I’ve	 experienced	 and	 learned	 over	 the	 past	 15	 years	 of	writing	 software	 design	
patterns.	 I’ve	 come	 to	 believe	 that	 if	 the	 software	 patterns	 community	 wants	 to	 broadly	 increase	 pattern	
literacy,	 relevancy,	 and	 long-term	 impact,	 some	 things	 need	 to	 change.	 Those	 changes	 need	 to	 start	 with	
pattern	writers—like	me.	 Instead	of	 indiscriminately	writing	ever	more	patterns	I	should	focus	my	attention	
on	connecting,	relating,	and	refreshing	the	abundance	of	existing	impactful	patterns.	Changes	also	need	to	be	
made	in	how	our	community	of	long-time	pattern	authors	and	advocates	present	and	promote	patterns	to	the	
rest	of	the	world.		

I’ve	written	dozens	of	patterns	with	colleagues	and	friends.	The	topics	range	from	software	requirements	to	
software	design	and	architecture	to	software	development	process	and	practice	patterns.	Some	of	our	patterns	
have	 been	 technical,	 detailed	 patterns	 for	 a	 specific	 architecture	 style	 (specifically,	 Adaptive	Object	Models)	
[AHLSWY,	WWY07,	WYW08,	WYW09,	HNSWY10,	HLNSWY10].	Some	have	been	about	architecture	practices	
on	 Agile	 projects	 [WY,	WYG].	 Others	 have	 been	 about	 improving	 software	 quality	 [YWA2014,	 YWW2014a,	
YWW2014b,	YWW2015,	YWW2016a,	YWW2016b].	We’ve	also	written	patterns	about	managing	and	evolving	
product	backlogs	for	complex,	long-lived	engineering	products	[HW15,	WH16,	HW17,	HW18,	WH18,	WH19].	

The	discipline	of	writing	patterns	has	mostly	been	fun	and	occasionally	challenging.	Surprisingly,	one	of	the	
most	difficult	 aspects	of	writing	patterns	has	been	getting	 sufficiently	 rich	and	useful	 critiques	 from	pattern	
writing	 workshops.	 Sometimes	 my	 fellow	 writing	 workshop	 colleagues	 have	 been	 helpful,	 at	 other	 times	
they’ve	barely	grasped	our	patterns	as	their	expertise	 lies	elsewhere.	PLoP	(Pattern	Languages	of	Programs)	
conferences	 have	 become	 venues	 for	 reviewing	 many	 different	 kinds	 of	 patterns.	 Not	 many	 experienced	
software	 designers	 and	 architects	 attend	 pattern	 conferences	 these	 days.	 Consequently,	 those	 who	 are	
unfamiliar	 with	 designing,	 building,	 and	 managing	 software	 development	 products	 and	 projects	 often	 are	
among	those	who	critique	my	patterns.	And	perhaps,	not	unsurprising,	most	of	my	exposure	to	new	ideas	and	
software	design	inspiration	comes	from	outside	the	patterns	community.	

Through	my	pattern	writing,	I’ve	immersed	myself	in	pattern	trivia	and	become	a	student	of	patterns	and	
Christopher	Alexander’s	writings	and	philosophy.	And	yet,	I	still	feel	like	a	patterns	community	outsider.	Inside	
the	patterns	community	I	may	be	perceived	as	somewhat	of	a	pattern	geek;	outside	this	community	I	talk	with	
other	 developers	 and	 designers	 about	 their	 practices	 and	 techniques,	 design	 guidelines	 and	 heuristics,	 and	
successes	 and	 failures.	 Only	 occasionally	 do	 I	 mention	 patterns.	 By	 the	 way,	 I	 feel	 like	 an	 outsider	 to	 any	
community	I	am	part	of.	This	feeling	isn’t	unique	to	the	patterns	community.		

There	are	benefits	to	being	an	outsider.	Because	I	don’t	feel	singularly	defined	by	any	particular	community,	
I	 find	 it	comfortable	 to	move	between	communities	and	 learn	new	 ideas.	 I’m	not	defined	by	pattern	writing.	
Nor	 am	 I	 defined	 by	 Domain	 Driven	 Design,	 Agile	 development,	 software	 architecture,	 or	 Open	 Space	
communities.	 What	 I	 do	 care	 most	 about—and	 this	 transcends	 communities—is	 learning	 and	 sharing	
__________________________________________	
Permission	to	make	digital	or	hard	copies	of	all	or	part	of	 this	work	for	personal	or	classroom	use	 is	granted	without	 fee	provided	that	
copies	are	not	made	or	distributed	for	profit	or	commercial	advantage	and	that	copies	bear	this	notice	and	the	full	citation	on	the	first	page.	
To	copy	otherwise,	to	republish,	to	post	on	servers	or	to	redistribute	to	lists,	requires	prior	specific	permission.	A	preliminary	version	of	
this	paper	was	presented	in	a	writers'	workshop	at	the	27th	Conference	on	Pattern	Languages	of	Programs	(PLoP).	PLoP’20,	October	12-
16,	Virtual	Online.		Copyright	2020	is	held	by	the	author(s).	HILLSIDE	978-1-941652-16-9.	



Should	we	stop	writing	design	patterns?					Page	-	2	
 

    

expertise	and	growing	awareness	and	appreciation	in	others	about	how	to	sustainably	design	and	build	useful	
software	systems.	

Unfortunately,	 none	 of	 the	 patterns	 I	 have	written	 have	 had	much,	 if	 any,	 impact	 on	 the	 larger	 software	
development	community.	There	hasn’t	been	a	broad	diffusion	of	ideas	or	learning	from	the	software	patterns	
community	to	the	larger	software	development	community.	

For	various	reasons	my	collaborators	and	I	have	not	yet	published	these	patterns	in	books.	Perhaps	if	we	
had	 done	 so,	 that	would	 give	 our	 patterns	more	 legitimacy	 and	make	 them	more	 accessible.1	 But	 I	 suspect	
other	 factors	 also	 contributed	 to	 our	 patterns’	 obscurity—poor	 timing,	 a	 lack	 of	 approachability	 of	 written	
pattern	 forms	 to	 our	 targeted	 audience	 of	 practicing	 developers	 and	 designers,	 limited	 applicability,	 lack	 of	
promotion,	or	lack	of	any	deep	and	lasting	connections	made	between	our	patterns	and	other	design	practices,	
principles,	patterns	and	schools	of	thought.	

Additionally,	 there	 is	 the	 important	matter	of	packaging	 for	ready	consumption.	Some	patterns	we	wrote	
were	part	 of	 patterns	 collections.	 Instead	of	 eventually	being	 consolidated	 and	housed	 in	 a	book	or	 focused	
website,	they	remain	scattered	in	a	series	of	papers	published	over	several	years	in	different	PLoP	proceedings	
which	are	obscurely	stored	in	the	ACM	digital	library.	This	makes	them	difficult	for	all	but	the	most	dedicated	
academic	to	find.	Without	more	active	curation,	clustering	our	patterns	into	relevant	sets	that	are	discoverable	
by	the	people	who	could	use	them,	our	patterns	will	become	lost.	

My	object	design	books	[Wirf90,	WM]	have	had	a	far	greater	impact.	
This	is	 in	part	due	to	the	readability/approachability	of	these	books,	but	mostly	due	to	timing.	Although	I	

thought	my	second	book	on	object	design	was	an	even	more	valuable	contribution	to	design	thinking	than	the	
first,	 it	 is	 the	 first	book	written	 in	1990	 that	was	 (and	still	 is)	widely	 recognized.	When	objects	were	 “new,”	
books	 on	 how	 to	 design	 object-oriented	 applications	were	 eagerly	 sought	 after	 by	 software	 developers.	 By	
2002,	when	my	second	object	design	book	was	published,	object	technology	was	well	on	its	way	to	becoming	
mundane.	

Timing	is	important.	As	is	novelty.	And	luck.	
But	another	force	at	play	here	that	we	should	not	ignore	is	the	fact	that	inside	the	patterns	community	we	

are	writing	patterns	 at	 a	meta	 level	 about	 software	design.	Most	 developers,	 however,	 are	 interested	 in	 the	
concrete	and	specific.	They	crave	detailed	design	advice.	Pattern	descriptions—by	intent—are	abstract.	There	
is	 a	 disconnect	 between	 the	 people	 I	 hope	 to	 reach	 and	 the	 way	 I	 am	 communicating	 my	 work	 through	
patterns.	

Perhaps	pattern	literature	is	not	the	best	way	to	convey	software	design	knowledge.	
Regardless,	writing	patterns	has	had	a	tremendous	impact	on	me.	My	hope	is	that	the	following	reflections	

will	prompt	you	as	 software	designers	and	developers	and	patterns	authors	 to	 think	more	deeply	about	 the	
relationship	between	written	patterns	and	software	design.		

2. SOME	LESSONS	I’VE	LEARNED	THROUGH	WRITING	PATTERNS	

Many	software	design	and	architecture	patterns	are	only	of	interest	to	those	working	in	narrow	software	niches.		
Toiling	away	writing	about	a	variant	of	a	particular	pattern	may	contribute	to	our	overall	body	of	knowledge	
(yes,	 I	 wrote	 a	 pattern	 named	ADAPTIVE	 OBJECT	MODEL	 BUILDER	 [WYW09],	 a	 variant	 of	 the	 BUILDER	 pattern,	 and	
several	 Adaptive	 Object	 Model	 rendering	 patterns)	 but	 these	 efforts	 are	 of	 limited	 value.	 Such	 knowledge,	
especially	in	a	narrow	field,	adds	value	only	if	that	knowledge	can	be	readily	shared	among	those	working	in	
that	field.	Not	many	designers	today	build	adaptive	object-model	systems.	Not	many	ever	did.	But	there	was	a	
small	core	of	contributors	who	wrote	patterns	for	this	architecture	style	in	the	early	2000s.	I	joined	this	group	
as	 a	 latecomer.	 I	 wanted	 to	 share	 my	 knowledge	 of	 using	 metadata	 in	 systems	 to	 design	 for	 flexible,	
interpretive	behaviors.	Plus,	I	like	collaborating.		

In	 hindsight,	 I	 caution	 potential	 authors	working	 in	 a	 specialized	 software	 field:	 beware—the	 effort	 you	
take	 to	document	your	work	as	patterns	may	not	have	any	discernible	 impact	on	your	 field.	Pattern	writing	
may	 help	 you	 to	 understand	 and	 develop	 deeper	 design	 insights.	 You’ll	 learn	 how	 to	 express	 the	 design	
constraints	 and	 forces	 that	 are	 balanced	 by	 a	 particular	 pattern.	 You’ll	 learn	 how	 to	 create	 and	 illustrate	

                                            
1 Even though I’ve published these individual patterns papers on my website and in PLoP proceedings, any view of 
them as a coherent set is lacking.  
 
 



Should	we	stop	writing	design	patterns?					Page	-	3	
 

    

exemplary	 solutions.	 But	 the	 dark	 truth	 is	 that	 publishing	 your	 knowledge	 only	 in	 pattern	 form	 limits	 the	
exposure	 of	 your	 work	 to	 those	 few	 who	 are	 either	 actively	 engaged	 in	 writing	 similar	 patterns	 or	 are	
academically	motivated	 to	 seek	 out	 pattern	 literature	 (few	 academics	 are	 so	 inclined)	 in	 pursuit	 of	making	
their	own	contributions.	There	is,	however,	value	to	you,	the	author	of	a	pattern,	as	a	note	to	your	future	self.	
Any	broader	impact	is	uncertain.	

	
Pattern	descriptions	need	refreshing.	
Christopher	Alexander	and	colleagues	in	the	preface	to	A	Pattern	Language	[AISJFA]	observed	that:	

	…each	 pattern	 represents	 our	 current	 best	 guess	 as	 to	what	 arrangement	 of	 the	 physical	 environment	will	
work	to	solve	the	problem	presented.	The	empirical	questions	center	on	the	problem—does	it	occur	and	is	 it	
felt	in	the	way	we	describe	it?—and	the	solution—does	the	arrangement	we	propose	solve	the	problem?	And	
the	asterisks	represent	our	degree	of	faith	in	these	hypotheses.	But	of	course,	no	matter	what	the	asterisks	say,	
the	patterns	are	still	hypotheses,	all	253	of	them—and	therefore	tentative,	free	to	evolve	under	the	impact	of	
new	experience	and	observation.	
	
Alexander	and	his	colleagues	expected	patterns	to	evolve	under	new	design	contexts.	What	isn’t	so	clear	is	

how	they	expected	new	insights	from	other	architects	to	be	communicated	or	how	their	patterns	could	evolve.	
In	 A	 Pattern	 Language,	 Alexander	 only	 hints	 at	 creating	 project-specific	 pattern	 languages	 (emphasizing	
particular	 patterns	 and	 their	 importance)	 that	would	 provide	 high	 level	 guidance	 for	 a	 specific	 architecture	
project:	

All	 253	 patterns	 together	 form	 a	 language.	 They	 create	 a	 coherent	 picture	 of	 an	 entire	 region,	 with	 the	
power	to	generate	such	regions	in	a	million	forms,	with	infinite	variety	in	all	the	details.	It	is	also	true	that	any	
small	sequence	of	patterns	from	this	 language	is	 itself	a	 language	for	a	smaller	part	of	the	environment	and	
this	small	list	of	patterns	is	then	capable	of	generating	a	million	parks,	paths,	houses,	workshops,	or	gardens.	
	
We	software	designers	and	architects	also	face	the	challenge	of	finding	effective	ways	to	update	and	refresh	

our	patterns	as	well	as	to	share	project-specific	design	insights.		
The	need	for	pattern	refreshing	is	especially	true	for	most	early	software	design	“proto-patterns.”	When	I	

first	reviewed	the	Design	Patterns	book	[Gamm],	I	hoped	for	a	continuing	stream	of	new	design	patterns	from	
these	authors.	I	strongly	suggested	that	they	publish	the	book	in	a	form	where	installments	and	additions	could	
be	made	on	a	 regular	basis.	This	notion	was	 similar	 in	 concept	 to	 the	yearly	addendum	to	 the	Encyclopedia	
Britannica,	 which	 could	 be	 purchased	 annually	 to	 keep	 the	 encyclopedia	 up	 to	 date.	 The	 editors	 liked	 my	
suggestion	 and	 passed	 it	 along	 to	 the	 authors.	 But	 unfortunately,	 the	 original	 authors	 did	 not	 update	 their	
patterns	for	a	variety	of	reasons,	not	the	least	being	the	untimely	death	of	John	Vlissides.		

Admirably,	 others	 with	 no	 direct	 connections	 to	 these	 original	 authors	 or	 the	 patterns	 community	 are	
taking	up	this	effort.	

For	 one	 good	 example,	 consider	 John	 Thompson’s	 web	 pages,	 which	 present	 the	 23	 patterns	 in	Design	
Patterns	 refreshed	 with	 examples	 from	 the	 Java	 Spring	 Framework	 [Thom].	 The	 descriptions	 are	 well	
motivated	 and	 provide	 an	 approachable	 introduction	 to	 these	 patterns	 that	 is	 especially	 relevant	 to	 Java	
programmers.	 The	OBSERVER	 pattern	 is	 motivated	 by	 a	 more	 modern	 application	 (registering	 and	 receiving	
tweets	from	those	you	follow).	And	the	example	solution,	more	appropriately,	uses	Java	 interfaces	 instead	of	
the	 original	 class-based	 solutions	 to	 define	 Observer	 and	 Subject	 implementable	 behaviors.	 To	 make	 the	
pattern	even	more	relevant,	a	specific	example	illustrates	how	this	pattern	is	applied	in	the	Spring	Framework.	
The	 author	 also	 thoroughly	 discusses	 the	 controversial	 SINGLETON	 pattern,	 demonstrating	 how	 to	 create	 a	
threadsafe	version	of	a	Singleton,	and	strongly	expresses	opinions	on	where	it	might	be	appropriate	and	why	it	
should	be	sparingly	used.	

Another	 example	 is	 Brandon	 Rhodes’	 Python	 patterns	 guide	 website	 [Rhod].	 In	 addition	 to	 showing	
examples	 of	 each	 of	 the	 23	 patterns	 found	 in	Design	 Patterns,	 he	 includes	 additional	 common	 foundational	
Python	patterns.	He	also	discusses	how	one	can	come	to	a	robust,	comprehensive	and	flexible	design	solution	
by	applying	the	design	principles	that	underlie	the	patterns	presented	in	Design	Patterns.	For	example,	in	the	
discussion	 of	 the	 principle,	 favor	 composition	 over	 inheritance,	 different	 design	 solutions	 for	 logging	 are	
shown.	These	range	from	ADAPTER	 to	BRIDGE	and	DECORATOR	pattern	 implementations.	 In	a	section	titled	“Going	
beyond	the	Gang	of	Four	patterns”	Rhodes	illustrates	how	Python’s	logging	capabilities	in	its	Standard	Library	
are	designed	with	even	more	flexibility—not	only	supporting	multiple	filters,	but	multiple	output	streams	for	
log	messages.	



Should	we	stop	writing	design	patterns?					Page	-	4	
 

    

These	two	sites	provide	useful	information	for	design-curious	Java	or	Python	programmers.	They	are	at	the	
level	 of	 detail	 that	 programmers	 can	 relate	 to,	 showing	 plenty	 of	 code	 along	 with	 thoughtful	 design	
commentary.	None	of	their	solutions	are	illustrated	with	the	more	abstract	UML	class	or	sequence	diagrams.	

	

Many	broadly	useful	patterns	are	not	well	known.	
A	notable	example	of	useful	patterns	that	have	slipped	into	relative	obscurity	are	the	software	re-engineering	
patterns	described	 in	Object-Oriented	Software	Reengineering	Patterns	 by	Serge	Demeyer,	 Stéphane	Ducasse,	
and	Oscar	Nierstrasz	 [Dem].	 Recently	 the	 authors	 have	 reclaimed	 the	 copyright	 to	 this	 book	 and	 now	 have	
made	an	online	version	freely	available	as	an	Open	Textbook	Library	text.2	

Each	chapter	starts	with	a	pattern	map	illustrating	potential	sequences	through	the	patterns	in	the	chapter	
based	on	desired	outcomes	(for	example,	see	Figure	1	for	the	pattern	map	to	Chapter	4).	
	

	
	

Figure	1.	Each	chapter	in	Object-Oriented	Reengineering	Patterns	is	a	small	language	

These	 patterns	 are	 still	 relevant	 in	 today’s	 development	 context	 although	 they,	 too,	 could	 benefit	 from	
updating.	For	example,	one	of	the	patterns	is	DO	A	MOCK	INSTALLATION.	These	days,	the	build	process,	even	for	a	
legacy	system,	typically	has	been	at	least	partially	automated;	consequently	an	appropriate	substitute	for	this	
might	be	a	pattern	named	BUILD	THE	SYSTEM	AND	MAP	DEPENDENCIES.	In	a	previous	essay,	I	observed	[Wirf17]	that,	
“Unintentionally,	the	biggest	misstep	these	authors	made	was	titling	their	book,	Object-Oriented	Reengineering	
Patterns.”	Object	 technology	patterns	are	only	mentioned	 in	 the	 last	 two	chapters,	and	some	of	 these	object-
technology	 specific	 patterns	 could	 be	 rewritten	 to	 be	 generally	 applicable	 to	 both	 functional	 and	 object	
programming	implementations,	 for	example,	MOVE	BEHAVIOR	CLOSE	TO	DATA,	ELIMINATE	NAVIGATION	CODE,	FACTOR	OUT	
STATE,	and	 FACTOR	 OUT	 STRATEGY.	 Perhaps	 if	 retitled	Software	 Reengineering	 Patterns,	with	 new	 chapters	which	
described	 several	 functional	 programming	 language	 implementation	 patterns,	 this	work	 could	 become	 even	
more	relevant.	

Another	handful	of	small,	useful,	but	unknown	patterns	comes	from	my	own	work.	In	a	2008	pattern	paper	
[WY],	we	described	three	patterns	for	sustaining	software	architecture.	Joe	Yoder,	my	co-author,	among	other	
accomplishments,	is	known	as	a	co-author	of	the	BIG	BALL	OF	MUD	pattern	[Foot].	That	paper	is	notorious	among	
software	 developers.3	 We	 wrote	 PAVING	 OVER	 THE	 WAGON	 TRAIL,	 a	 pattern	 for	 building	 a	 tool	 (most	 likely	 to	
generate	code)	that	enables	repetitive,	error	prone	programming	tasks	to	be	eliminated.	WIPING	YOUR	FEET	AT	THE	
DOOR	is	a	pattern	for	cleaning	up	data	by	transforming	it	at	the	“edges”	of	a	system	in	order	to	reduce	internal	
complexity.	 A	 third	 pattern	was	 about	 a	well-intentioned	 effort	 to	make	 programming	 simpler	 that	 instead	
                                            
2 https://open.umn.edu/opentextbooks/textbooks/object-oriented-reengineering-patterns 
3 Sadly, this paper is widely misunderstood. People commonly refer to the BIG	BALL	OF	MUD as an anti-pattern, an 
architecture that is sprawling and unmaintainable, that you should try to re-work. Instead, if you actually read the Big 
Ball of Mud paper, you will find it contains a number of small, practical patterns for containing and managing 
complexity in a sprawling legacy system. These gems are in addition to its heart-felt and humorous discussion of how 
it is better to live with mud (in appropriate places of a system) rather than to try to fix things up and make a totally 
new, clean architecture. 

Chapter 4: Initial 
Understanding Patterns 

Identify 
problems 

Understand? 

Top Down 

Pattern 4.1: 
Analyze the 
Persistent Data 

Pattern 4.2 
Speculate about Design 

Bottom up 

Pattern 4:3 
Study the 
Exceptional Entities 

Recover 
design 

Recover 
database 



Should	we	stop	writing	design	patterns?					Page	-	5	
 

    

reinforced	 poor	 programming	 practices	 and	 exacerbated	 the	 erosion	 of	 the	 architecture:	 PAVING	 OVER	 THE	
COWPATH.	 We	 took	 care	 to	 explain	 why	 this	 was	 not	 an	 anti-pattern,	 but	 instead	 an	 insidious	 form	 of	 well-
intentioned	 tool	 tinkering.	These	patterns	were	 intended	 to	help	prevent	design	decay	and	sustain	complex,	
evolving	architectures.	

These	patterns	 are	 still	 relevant.	But	 as	 they	never	 gained	much	visibility,	 they	 are	 at	 risk	 of	 fading	 into	
obscurity.	Perhaps	I	humor	myself	by	thinking	that	they	haven’t	already	disappeared	from	sight.	I	suspect	there	
are	several	reasons	for	their	obscurity.	We	were	far	too	clever	and	culturally	limited	with	their	naming.	The	BIG	
BALL	OF	MUD,	after	all,	inspired	us	to	give	them	names	that	implied	muddy	pathways,	trails,	and	the	need	to	clean	
data	 at	 system	 entryways.	 Those	 names	 detracted	 from	 their	 potential	 “stickiness.”	 I	 suspect	 an	 even	more	
important	 factor	 contributing	 to	 their	 insignificance	 was	 that	 we	 spent	 no	 time	 at	 all	 connecting	 our	 new	
patterns	 to	other	well-known	related	patterns	such	as	Eric	Evan’s	ANTICORRUPTION	LAYER	pattern	 [Evan]	or	 the	
smaller	patterns	contained,	obscurely,	in	the	BIG	BALL	OF	MUD.	We	certainly	knew	about	these	other	patterns,	but	
frankly	we	were	more	 interested	 in	writing	 new	 patterns	 that	 incorporated	 our	 shared	 knowledge	 than	 in	
hooking	them	to	the	broader	body	of	existing	patterns	and	promoting	their	recognition	and	use.4	

	
Patterns,	or	small	clusters	of	them—no	matter	how	useful—cannot	thrive	in	isolation.	
Imagine	having	just	read	one	of	Alexander’s	patterns	[AISJFA]	such	as	the	WINDOW	PLACE	 in	 isolation.	Without	
the	 awareness	 of	 the	 many	 other	 patterns	 found	 in	 A	 Pattern	 Language	 or	 a	 larger	 context	 of	 designing	 a	
dwelling,	applying	 a	 single	pattern	won’t	have	much	 impact.	 It	 is	 only	when	a	designer	 sees	how	 individual	
patterns	are	integrated	within	a	larger	body	of	design	knowledge	that	she	gains	deeper	insights	and	awareness	
of	 how	 patterns	 interact	 to	 create	 a	 holistic	 design.	 Not	 only	 do	 patterns	 need	 to	 be	 connected;	 there	 are	
naturally	occurring	larger	“enclosing”	patterns	that	also	should	be	identified	to	provide	a	home	and	organizing	
structure	for	patterns	with	a	smaller	design	scope.	

To	be	relevant	and	stay	relevant,	software	design	patterns	need	to	be	richly	connected	to	each	other	as	well	
as	to	other	useful	design	concepts,	principles,	heuristics	and	practices	(regardless	of	their	authors	and	whether	
they’ve	been	described	 in	pattern	 form).	These	 connections	need	 to	be	 strong	ones.	Connections	need	 to	be	
explained	and	made	explicit.	Connecting	so	deeply	requires	more	effort;	simply	citing	references	to	prior	work	
won’t	suffice.		

Let	me	 explain	 the	 notion	 of	making	 deep	 connections	 between	 concepts	 and	 patterns	with	 an	 example	
from	my	own	experience.	Long	before	 I	wrote	patterns,	 I	 conceived	of	 the	 concept	of	object	role	 stereotypes	
[Wirf92].	 Role	 stereotypes	 are	 purposeful	 oversimplifications	 that	 can	 be	 used	 by	 designers	 to	 identify	 and	
reason	about	the	work	that	objects	do	[WM,	Wirf06].		

Once	I	observed	and	named	these	six	“patterns”	of	behavior	in	object-oriented	applications—at	that	time,	
Smalltalk	applications—I	 found	 I	 could	spot	 them	anywhere.	 In	 later	works	on	Responsibility-Driven	Design	
[WM,	 Wirf06],	 I	 demonstrated	 how	 well-known	 software	 design	 patterns	 embodied	 one	 or	 more	 role	
stereotypes.	For	example,	a	coordinator	role	is	one	where	an	object	in	a	rote	or	mechanical	way	delegates	work	
to	other	objects.	The	MEDIATOR	pattern	is	an	example	of	a	coordinator.	And	the	FAÇADE	pattern	is	an	example	of	
an	 interfacer	 role	 where	 an	 object	 serves	 as	 an	 intermediary	 between	 different	 parts	 of	 the	 system.	 I	 also	
promoted	 the	 idea	 that	 by	 identifying	 patterns	 of	 interacting	 role	 stereotypes	 one	 could	more	 clearly	 see	 a	
software	 design,	 whether	 emergent	 or	 existing.	 This	 way	 of	 seeing	 for	 me	 not	 only	 helped	 with	 design	
discussions	and	comparison	of	alternative	approaches,	but	also	with	reverse	engineering	the	design	of	existing	
object	technology	implementations.	It	was	so	important	that	I	wrote	another	book	about	it	and	and	updated	a	
group	 of	 techniques	 for	 seeing	 and	 shaping	 an	 object	 design	 [WM].	 Although	 I	 tried	writing	 individual	 role	
stereotypes	 in	 pattern	 form,	 I	 quickly	 abandoned	 this	 effort.	 Role	 stereotypes	 were	 aids	 to	 perceiving	 the	
behaviors	 embodied	 in	 a	 design.	 That	 design	 may	 or	 may	 not	 incorporate	 any	 known	 design	 patterns.	
Regardless,	I	could	use	role	stereotypes	and	“patterns”	for	arranging	them,	along	with	other	design	heuristics	
and	 principles	 to	 structure	 interacting	 object	 behaviors.	 Role	 stereotypes	 were	 more	 fundamental	 than	
software	 design	 patterns.	 In	 and	 of	 themselves	 they	were	 not	 solutions	 to	 known	design	 problems.	 So	 they	
weren’t	pattern	worthy.		
                                            
4 This urge to create rather than integrate new knowledge shouldn’t be surprising. None of original authors have 
updated the Big Ball of Mud paper or Domain Driven Design (DDD) patterns. Fortunately, others in the DDD 
community have written several books popularizing additional Domain Driven Design patterns and practices, 
distilling the essential DDD patterns, showing how they can be implemented in functional programming languages, 
and integrating them with other modeling practices.  



Should	we	stop	writing	design	patterns?					Page	-	6	
 

    

Recently,	Olaf	Zimmerman	and	colleagues	have	written	and	published	Microservice	API	patterns	that	were	
inspired	by	my	notion	of	role	stereotypes	[ZPLZSa,	ZPLZSb,	ZSLZP].	Although	our	work	has	been	cited	in	their	
patterns	papers,	it	is	a	small	footnote	among	several.	Consequently,	the	reader	of	their	patterns,	especially	as	
they	are	cast	on	their	website,	is	not	directly	connected	to	idea	of	object	role	stereotypes	which	could	be	useful	
in	designing	the	internals	of	services	that	implement	these	API	patterns.	Instead,	designers	will	have	to	make	
those	 connections	 on	 their	 own—if	 they	 ever	 do.	 Finding	 relevant	 threads	 to	 pull	 on	 to	 make	 connections	
between	newer	and	older	design	concepts	 is	 left	as	an	exercise	 to	only	careful,	 studious	readers	or	software	
historians.	
	
Many	software	design	and	architecture	patterns	are	overly	specific	and	imply	prescriptive	technology	solutions.	
It	is	all	too	easy	in	2020	to	criticize	the	original	Design	Patterns	descriptions	as	being	outdated.	But	this	isn’t	a	
fair	 assessment.	At	 the	 time	early	pattern	authors	wrote	 their	patterns,	 they	described	what	 they	knew	and	
directly	 experienced.	 No	 speculation	 or	 innovation	 or	 generalization;	 design	 patterns	 described	 design	
phenomena	observed	 in	multiple,	 pre-existing,	 successful	 software	 system	 implementations.	Design	Patterns	
was	written	when	object-technology	was	gaining	prominence	and	object	design	solutions	were	common	(they	
still	are,	but	are	not	as	prominent).		

Nonetheless,	 even	 the	 Spring	 Framework	 design	 patterns	 author	 offers	 a	 somewhat	 constrained	 view	 of	
these	patterns’	utility	as	evidenced	by	this	introduction	[Thom]:		

The	GoF	[authors	of	Design	Patterns]	wrote	the	book	in	a	C++	context	but	it	still	remains	very	relevant	to	Java	
programming.	C++	and	Java	are	both	object-oriented	languages.	The	GoF	authors,	through	their	experience	in	
coding	large-scale	enterprise	systems	using	C++,	saw	common	patterns	emerge.	These	design	patterns	are	not	
unique	to	C++.	The	design	patterns	can	be	applied	in	any	object-oriented	language.5	
	
There	 is	 nothing	 technology	 specific	 about	 an	 ADAPTER	 or	 a	 FACADE	 or	 an	 OBSERVER.	 Even	 though	 Design	

Patterns	was	explicitly	written	as	a	collection	of	object	design	solution	patterns,	illustrated	with	pre-UML	class	
diagrams	 and	 C++	 code	 snippets,	 these	 patterns	 can	 be	 implemented	 in	 any	 programming	 language.	 Most	
developers	 today	 construe	 the	 original	 23	 Design	 Patterns	 as	 relevant	 only	 to	 object-oriented	 software	
solutions.	

I	 know	 I	 can	 use	 an	ADAPTER	 or	BRIDGE	or	 STRATEGY	 regardless	 of	 technology	 because	 I’ve	 done	 so.	 A	more	
inexperienced	designer	might	not	so	easily	make	this	leap.	However	straightforward	it	is	for	me	to	transpose	
design	 patterns	 to	 different	 programming	 language	 and	 design	 contexts;	 I	 recognize	 that	 this	 ability	 comes	
from	experience	and	seeing	 lots	of	 solutions.	Even	 though	 the	original	pattern	descriptions	might	have	been	
overly	constrained	or	deceptively	simplified,	I	can	make	that	leap	to	another	(similar	enough)	context.	

It	is	noteworthy	that	the	Spring	Java-refreshed	versions	of	Design	Patterns	include	examples	written	in	Java,	
along	with	textual	descriptions.	There	are	no	Class	diagram	illustrations	or	more	abstract	depictions	of	pattern	
solutions.	 These	 days,	 more	 abstract	 representations	 of	 a	 software	 design	 solution—say	 a	 UML	 class	 or	
sequence	diagram	fragment—are	becoming	increasingly	rare	because	such	representations	are	not	perceived	
as	conveying	useful	additional	information.	Perhaps	in	this	Stack	Overflow	era,	most	programmers	are	looking	
for	solutions	to	immediate	problems	rather	than	looking	to	acquire	generalized	design	knowledge.	
	
There’s	a	tension	between	presenting	concrete	solutions	and	generalizable	abstractions.	
However	potentially	useful	software	design	patterns	may	be,	unless	they	have	been	contextualized	for	today’s	
technologies	 and	 software	 designers,	 it	 will	 be	 difficult	 for	 newcomers	 to	 understand	 and	 apply	 them.	 An	
accessible	 introduction	 to	 a	 specific	 software	 pattern	 and	 its	 significance	 ideally	 provides	 a	 context	 and	 a	
concrete	 example	 that	 can	 be	 easily	 grasped.	 Without	 any	 higher	 abstractions	 or	 lingua	 franca,	 when	 the	
technology	changes—to	stay	approachable—that	solution	will	need	updating.	

Paradoxically,	it	is	the	concreteness	of	some	pattern	solutions	that	deceive	us	into	believing	that	“what	we	
see	is	all	there	is”	[Kahn].	As	Rudolph	Arnheim	in	Visual	Thinking	[Arn]	observes,	“The	more	perfect	our	means	
of	direct	experience,	the	more	easily	we	are	caught	by	the	dangerous	illusion	that	perceiving	is	tantamount	to	
knowing	and	understanding.”	So,	when	pattern	authors	present	a	realistic	concrete	solution,	we	readers	may	
be	lulled	into	thinking	we	know	the	extent	of	the	pattern	simply	because	we	understand	it.	
                                            
5 And indeed, they were. In fact, the authors of Design Patterns were familiar with C++ and Smalltalk. But as 
Smalltalk’s popularity was waning at the time the book was written, they decided to use only one programming 
language and they chose C++. 



Should	we	stop	writing	design	patterns?					Page	-	7	
 

    

To	 present	 the	 essence	 of	 a	 pattern—its	 abstraction	 if	 you	will—requires	 a	 different	 type	 of	 exposition.	
That	more	abstract	form	needs	a	sparser	description	with	a	simple	yet	exemplary	sketch	of	the	problem.	The	
solution	 shouldn’t	 be	 spelled	 out	 in	 great	 detail.	 Or,	 if	 a	 solution	 is	 presented,	 it	might	 be	 representative.	 A	
more	 abstract	 pattern	 should	 convey	 not	 only	 its	 significance	 but	 at	 the	 same	 time	 be	 sketchy	 enough	 that	
designers	 are	 forced	 (and	 expect)	 to	 fill	 in	 many	 details	 to	 fit	 it	 to	 their	 specific	 design	 situation.	 Equally	
important,	that	pattern	needs	to	be	located	among	other	patterns	and	within	a	larger	design	context.		

Both	abstract	and	concrete	descriptions	are	valuable—just	to	different	audiences.	
To	 date	 we,	 as	 a	 loosely	 formed	 patterns	 writing	 community,	 have	 not	 identified	 nor	 agreed	 upon	

conventions	for	tagging	pattern	descriptions	with	cautionary	advice	or	tailoring	them	to	specific	audiences	and	
contexts.	 For	 now,	 pattern	 authors	 are	 merely	 advised—at	 least	 in	 several	 writing	 workshops	 I	 have	
attended—to	simply	explain	their	choices	and	style	of	descriptions	to	their	intended	readers.	

3. LOOKING	BACK	TO	MY	PATTERNS	BEGINNINGS	

Looking	back	to	2006,	I	wrote	my	first	patterns	with	Paul	Taylor	and	James	Noble	[WTN].	We	explored	writing	
patterns	 for	 conceptualizing	problems	 rather	 than	designing	 solutions	 to	 those	problems.	We	were	 eager	 to	
make	connections	and	create	or	link	a	rich	network	of	patterns	that	spanned	from	requirements	into	design.	

There	 are	 times	when	 software	 designers	 don’t	 see	 clearly	what	 the	 problem	 is.	 In	 our	 paper	we	 asked,	
“What	 if	 we	 find	 ourselves	 washing	 around	 in	 the	 amorphous	 problem	 space,	 unable	 to	 get	 a	 foothold	 on	
anything	to	bear	the	weight	of	a	[design]	pattern	or	to	anchor	a	fragment	of	architecture?	Is	there	another	kind	
of	 pattern	 that	 helps	 to	 locate	 our	 thinking	 early	 in	 the	 analysis	 and	 conceptualization	 of	 systems	 and	
solutions?	Do	patterns	in	the	problem	space	exist?”		

We	used	Michael	Jackson’s	Problem	Frames	[Jack]	as	a	basis	for	this	pattern	writing	experiment.	Jackson’s	
problem	 frames	 are	 intriguing	 because	 they	 build	 on	 a	 recognition	 of	 generic	 problem	 types,	 based	 on	
structures	and	relationships	between	domains	and	designed	system	elements	(Jackson	calls	these	“machines”).	
Problem	frames	are	based	on	a	philosophy	of	phenomenology,	which	firmly	places	us	in	a	world	of	concepts,	
domains,	 phenomena	 and	 machines—in	 our	 case	 as	 software	 designers	 those	 machines	 are	 software	
mechanisms	 of	 our	 own	 creation—which	 interact	with	 the	 elements	 of	 the	 problem’s	 enveloping	 context	 in	
order	to	have	a	desired	effect	upon	the	world.	

Jackson	 described	 five	 different	 problem	 frames:	 Required	 Behavior,	 Commanded	 Behavior,	 Information	
Display,	 Simple	Workpieces,	 and	Transformation.	A	Required	Behavior	 frame	deals	with	a	 class	of	problems	
where	you	want	to	control	state	changes	of	some	thing	outside	the	boundaries	of	your	software	machinery.	A	
Commanded	Behavior	problem	frame	is	about	controlling	changes	to	some	thing	based	on	either	an	operator	
or	user’s	commands.	An	 Information	 frame	 is	about	problems	where	 there	 is	a	need	 to	produce	 information	
about	 observable	 phenomena	 (usually	 over	 time).	 A	 Simple	 Workpieces	 frame	 addresses	 the	 problem	 of	
creating	tooling,	which	enables	users	to	create	and	manipulate	structures.	Finally,	a	Transformation	frame	is	
about	problems	of	converting	input	to	one	or	more	outputs.	

Jackson	illustrated	each	problem	frame	with	a	schematic	drawing	and	discussed	their	specific	concerns—
around	which	you	would	eventually	write	requirements.	

I	recall,	when	first	reading	Jackson’s	work	some	years	prior	to	my	pattern	writing	experiment,	that	I	hoped	
additional	frames	would	soon	be	added	by	an	active	problem	framing	community.	The	problem	frames	Jackson	
described	 didn’t	 appear	 immediately	 relevant	 to	 the	 problems	 I	 frequently	 encountered	 in	 IT	 and	 software	
engineering.	 Jackson’s	 frames	seemed	most	appropriate	 for	 characterizing	 requirements	 for	physical	 control	
systems.	However,	I	found	that	with	a	little	bit	of	mental	effort	that	I	could	“stretch”	his	conceptual	framework	
to	fit	problems	I	was	designing	for.		

For	example,	instead	of	controlling	a	device,	I	might	design	software	that	was	“controlling”	the	behavior	of	
an	external	software	system	that	I	could	not	directly	probe	for	whether	it	had	acted	on	my	software’s	requests.	
I	was	reconfiguring	Jackson’s	frames	to	better	fit	my	design	context.	But	I	found	that	I	could	stretch	his	frames	
only	so	far	and	that	they	did	not	adequately	cover	my	problem	territory.		

However,	 once	 I	 conceptually	understood	problem	 frames	and	how	 they	 could	map	onto	my	problems,	 I	
caught	glimpses	of	them	everywhere.	Complex	software	systems	interacting	with	other	systems	and	databases	
tend	 to	have	multiple	overlapping	problem	 frames.	After	 I	had	appropriately	 framed	a	 situation,	 there	were	
salient	questions	I	could	ask	to	uncover	more	information	about	the	nature	of	the	problem	at	hand.	There	was	
a	set	of	software	related	questions	relevant	to	each	frame	[WTN].	

For	example,	here	are	some	questions	one	might	ask	about	required	behavior	problems:	
• What	external	state	must	be	controlled?		



Should	we	stop	writing	design	patterns?					Page	-	8	
 

    

• How	does	my	software	find	out	whether	its	actions	have	had	the	intended	effect?	Does	it	need	to	know	
for	certain,	or	can	it	just	react	later	(when	the	state	of	some	thing	is	not	as	expected)?		

• What	should	happen	when	things	get	“out	of	synch”	between	the	software	system	and	the	thing	it	 is	
supposedly	controlling?		

• How	and	when	does	my	software	decide	what	actions	to	initiate?	Is	there	a	sequence	to	these	actions?	
Do	they	depend	on	each	other?	

• Can	I	view	the	connection	between	my	software	and	the	thing	under	control	as	being	direct	(easier)	or	
do	 I	 need	 to	 consider	 that	 it	 is	 connected	 to	 something	 that	 transmits	 requests	 to	 the	 thing	 being	
controlled	(and	that	this	connection	can	cause	quirky,	interesting	behavior)?	

	
In	our	problem	frame	patterns	paper	we	remarked	that,	“[t]he	fact	that	we	put	problem	frames	into	pattern	

form	 demonstrates	 that	 when	 people	 write	 specifications,	 they	 are	 designing	 too—they	 are	 designing	 the	
overall	system,	not	its	internal	structure”	[WTN].	And	while	problem	frames	are	firmly	rooted	in	the	problem	
space,	 to	 us	 they	 also	 suggested	 potential	 design	 solution	 spaces	 to	 explore.	 For	 example,	 when	 solving	
translation	problems	it	seems	reasonable	to	check	out	software	design	patterns	about	how	to	write	parsers,	or	
to	 consider	 the	 COMMAND	 pattern	 when	 designing	 a	 solution	 to	 a	 Commanded	 Behavior	 problem	 (or	 most	
frames	 involving	a	user-operator	domain).	And	Required	Behavior	problems	suggest	 investigating	event	and	
event	handling	patterns,	finite	state	machines,	or	reactive	system	design	patterns.	

These	are	fairly	straightforward	connections	for	me	as	an	experienced	software	designer	to	make.	But	this	
is	 because	 I	 know	 of	 many	 software	 design	 and	 architecture	 patterns	 as	 well	 as	 other	 design	 techniques,	
practices,	 architecture	 styles,	 and	 design	 heuristics.	 Problem	 framing	 is	 simply	 one	 way,	 among	 many,	 to	
explore	 a	 problem	 space—a	 conceptual	 tool	 I	 use	 to	 focus	 on	 specific	 aspects	 of	 the	 problem	 as	 I	 untangle	
complex	system	requirements.		

At	the	time	I	learned	about	problem	frames,	there	were	other	better-known	analytic	techniques	available.	
We	analysts	and	designers	were	busy	writing	Use	Cases,	creating	context	diagrams,	as	well	as	workflow,	data	
and	object	diagrams.	I	 integrated	framing	into	my	existing	bag	of	tricks	for	understanding	the	problem	space	
and	quietly	moved	on.	Problem	framing	didn’t	replace	any	analysis	technique	I	already	knew;	it	just	slipped	in	
amongst	them	all	as	an	imperfect	backdrop.	

So,	did	problem	framing	help	me	be	a	better	designer?	Perhaps.	Framing	gave	me	yet	another	way	of	seeing	
problems.	Problems	are	frequently	composed	of	multiple	overlapping	problem	frames.	So	the	act	of	framing	a	
problem	doesn’t	straightforwardly	lead	to	any	particular	design	solution.	The	path	from	framing	a	problem	to	
choosing	an	appropriate	software	architecture	or	set	of	design	patterns	is	roundabout	at	best.		

However,	once	you	“see”	a	problem	frame,	applying	the	lens	offered	by	that	particular	frame	leads	you	to	
ask	 focused	 questions	 about	 a	 portion	 of	 software	 system’s	 requirements.	 The	 answers	 to	 these	 focused	
questions	don’t	directly	lead	to	specific	design	patterns	and	approaches;	but	they	do	raise	your	awareness	of	
what	might	be	harder	problems	to	solve.	

We	 remarked	 in	our	patterns	paper	 that,	 “Patterns	work	 like	a	 ladder	 in	 the	 ‘Snakes	and	Ladders’	board	
game—given	 a	 known	 context	 and	 problem	 (square	 on	 the	 board)	 they	 give	 us	 a	 leg-up	 to	 a	 higher	 place.	
Design	 patterns	 fall	 squarely	 in	 the	middle	 of	 the	 solution	 space	 and	 provide	 object-oriented	 fragments6	 of	
structure	to	resolve	solution	space	forces”	[WTN].	

Did	problem	framing	help	me	and	others	become	better	analysts?	I’m	unsure.	
I	found	teaching	others	about	problem	frames	to	be	an	abject	failure.	Both	the	formal	diagram	notation	as	

well	as	the	concept	of	problem	frames	confused	my	students.	After	a	few	failed	attempts	at	trying	to	get	them	
to	 appreciate	 problem	 frames	 in	 all	 their	 gory	 detail—how	 to	 identify	 them,	 draw	 them,	 and	 describe	 their	
concerns—I	dropped	the	idea	of	explicitly	teaching	them.	My	students	didn’t	get	the	point.	

They	did,	however,	find	it	useful	to	have	sets	of	related	questions	they	could	ask	to	gain	further	insight	into	
their	 system’s	 requirements.	That	 those	questions	were	related	 to	 the	concerns	relevant	 to	 specific	problem	
frames	was	a	distraction.	Shh!!	No	need	to	tell	my	students	about	problem	frames.	

Learning	 the	mechanics	of	writing	clearly	and	at	 the	appropriate	 level	of	detail	 (and	some	questions	one	
might	ask	to	get	at	those	details)	were	practical	skills	that	they	could	absorb	and	appreciate.	The	conceptual	
                                            
6 To put this in historical context, we were awash in object technology, design, and architecture patterns as of 2006: 
Design Patterns had been published with great success followed by Fowler’s Analysis Patterns (1996), Patterns of 
Enterprise Application Architecture and Object-oriented Reengineering Patterns in (2002), Domain Driven Design 
(2003), and three of the five volumes of Pattern-Oriented Software Architecture. 



Should	we	stop	writing	design	patterns?					Page	-	9	
 

    

backdrop	of	problem	framing	didn’t	need	to	be	their	focus.	Rather,	it	was	the	hidden	guiding	hand	behind	those		
questions.	

Framing	is	yet	one	more	way	to	gain	some	perspective	on	a	part	of	the	problem	at	hand.	It’s	useful	to	me	as	
one	of	many	tools,	regardless	of	whether	I	can	connect	those	insights	with	any	patterned	design	solution.	Once	
I	know	what	the	problem	really	is,	then	I	can	make	use	of	my	knowledge	of	both	software	design	patterns	and	
heuristics	to	work	out	a	plausible	solution.	

4. SOME	CONCLUSIONS	ABOUT	THE	CURRENT	STATE	OF	SOFTWARE	DESIGN	PATTERNS	

As	designers	and	architects,	we	aspire	to	readily	connect	known	problems	to	plausible	solutions.	But	unless	I	
am	designing	something	similar	to	what	I	have	designed	before,	I	must	put	in	a	lot	of	work	before	I	gain	any	
design	traction	let	alone	create	a	sustainable	architecture.	I	can	only	proceed	to	design	with	confidence	after	a	
fair	 amount	 of	 experimentation	 and	 thinking.	 While	 I	 recognize	 that	 design	 patterns	 offer	 only	 general	
solutions—and	that	those	solutions,	depending	on	the	author’s	particular	writing	style,	are	at	varying	levels	of	
granularity	and	abstraction—I	still	find	that	I	am	frustrated	when	I	apply	new-to-me	patterns.	I	have	to	fill	in	
so	many	details	and	make	many	myriad	smaller	design	decisions.	Sure.	I	expect	that.	But	it	 is	precisely	these	
extra	bits	of	wisdom	that	I	seek	out	when	I	enter	new	design	territory—those	particular	design	heuristics	and	
tips	 and	 insights	 that	 come	 from	 lived	 experience.	 Pattern	 descriptions	 rarely	 convey	 those	 things.	While	 I	
greatly	value	software	design	patterns—as	they	embody	useful	design	knowledge—I	have	little	confidence	in	
their	immediate,	straight-out-of-the-box	utility.	

Even	more	disconcerting,	newly	published	software	design	patterns	are	not	often	oriented	to	the	existing	
body	of	software	design	patterns.	And	many	useful	software	patterns	remain	relatively	unknown.	There	is	little	
coherence	to	existing	software	design	knowledge,	let	alone	the	large	body	of	software	design	patterns	that	are	
scattered	about.	

	If	 you	 don’t	 attend	 patterns	 conferences	 or	 regularly	 scour	 the	 patterns	 conference	 proceedings	 and	
published	books	or	websites,	you	may	not	even	find	the	good	stuff	let	alone	understand	how	it	connects	to	or	
extends	 prior	 work.	 Consequently,	 you	 are	 reduced	 to	 making	 Internet	 searches	 and	 poring	 over	 Stack	
Overflow	postings	 to	 find	 relevant	 design	 advice,	 one	 bite-sized	morsel	 at	 a	 time,	 then	 piecing	 together	 the	
information	 on	 your	 own.	 While	 personally	 worthwhile,	 this	 doesn’t	 serve	 the	 needs	 of	 the	 larger	 design	
community.	

For	example,	as	evidenced	by	a	recent	tweet	stream	[Garr20a],	people	are	currently	discussing	implications	
of	 meshing	 the	 concept	 of	 Alistair	 Cockburn’s	 HEXAGONAL	 ARCHITECTURE	 patterns	 [Co05]	 with	 the	 creation	 of	
Domain	Driven	Design’s	BOUNDED	CONTEXTS	and	whether	there	should	be	new	variants	to	the	notion	of	PORTS	and	
ADAPTERS.	The	threaded	discussion	started	with	a	tweet	announcing	a	new	GitHub	post	on	the	topic	[Garr20b].	It	
was	followed	by	comments	from	another	tweeter	who	also	wrote	a	blog	post	[Pier]	about	his	understanding	of	
these	patterns.	 Intermingled	 in	 the	tweet	 thread	were	comments	by	the	original	pattern	author.	Eventually	 I	
discovered	that	the	original	tweeter	also	had	a	GitHub	repository	that	contained	several	postings	on	the	topic	
[Garr20c].	While	I	could	piece	together	this	conversation	with	the	extra	information,	this	simply	reinforced	my	
opinion	that	Twitter	is	horrible	medium	for	capturing	and	preserving	meaningful	discussions	and	that	pattern	
discussions	are	happening	all	over	the	Internet.	

5. A	CALL	TO	ACTION	

	If	we	 as	 a	 patterns	 community	want	 to	 promote	 software	 design	 pattern	 literacy,	 relevancy,	 and	 long-term	
impact,	 things	need	 to	 change.	 Instead	of	 staying	 the	 course,	 pumping	out	 ever	more	patterns,	 I	 suggest	we	
perform	some	bold	experiments	and	learn	from	them	how	best	to	proceed	with	longer-term	efforts.	

Instead	of	only	holding	patterns	conferences	whose	primary	focus	is	encouraging	new	authors	and	students	
to	 write	 yet	 more	 patterns,	 we	 should	 devote	 a	 significant	 fraction	 of	 our	 attention	 toward	 discussing,	
organizing,	updating,	connecting	and	re-connecting,	and	rescuing	the	body	of	existing	software	patterns.	

It	may	be	that	the	existing	knowledge	is	too	sprawling	to	organize	in	any	coherent	way.	And	yet,	in	spite	of	
the	lack	of	any	organized	or	concerted	effort,	the	collective	knowledge	about	patterns	is	growing.	Perhaps	our	
goal	as	a	software	design	community	shouldn’t	be	to	make	everything	neat	and	tidy.	Design,	after	all	is	a	messy	
process.	Why	should	the	evolution	and	integration	of	software	design	patterns,	heuristics	and	practical	design	
knowledge	be	different?	

Acknowledging	this	messy	state	of	affairs,	we	could	sponsor	or	create	an	ecosystem	that	fosters	patterns’	
continued	 use	 and	 evolution.	 In	 the	 early	 days	 of	 patterns,	Ward	 Cunningham	 fostered	 open,	 wide-ranging	



Should	we	stop	writing	design	patterns?					Page	-	10	
 

    

discussions	 on	 design	 and	 patterns	 on	 his	 Portland	 Pattern	 Repository	 Wiki.	 Perhaps	 as	 a	 community	 we	
should	gather	together	to	recreate	a	curated	space	for	discussing	design	and	design	patterns.	I	envision	a	lively	
forum	 where	 designers	 could	 share	 their	 insights	 into	 the	 many	 detailed	 decisions	 they	 make	 as	 they	
implement	systems,	and	apply,	extend,	refresh,	and	newly	conceive	design	patterns.	

Additionally,	we	could	hold	software	pattern	mining,	design	heuristic	hunting,	and	pattern	refining	events.	
We	 in	 the	patterns	community	can	contribute	our	unique	perspectives	and	a	sense	of	our	history	 to	help	

weave	 together	 currently	 disjoint	 software	 patterns	 along	 with	 useful	 design	 advice	 and	 other	 design	
heuristics	(whether	written	in	pattern	form	or	not).	

We	might	even	be	so	bold	as	to	consolidate	and	present	a	“core”	of	what	we	believe	to	be	the	more	enduring	
and	impactful	software	design	patterns.		

Equally	 important,	we	should	start	publishing	patterns	workshopped	at	PLoP	conferences	differently.	We	
could	 designate	 commentators	 to	write	 an	 accompanying	 précis	 as	well	 as	 an	 analysis	 that	 connects	 newly	
written	 and	 published	 patterns	 to	 the	 pre-existing	 body	 of	 knowledge.	 We	 might	 even	 speculate	 on	 new	
patterns’	significance,	scope,	and	utility.	Or	contribute	additional	examples	of	their	use	or	exemplary	solutions.	

Chris	Kohls	and	I	[WK]	recently	pointed	out	yet	one	more	avenue	of	exploration:		
Rather	than	drowning	pattern	readers	in	even	more	text,	verbal	descriptions,	and	caveats,	we	propose	that	a	
better	way	to	establish	richer,	more	productive	views	of	patterns	would	be	to	present	curated	views	depicting	
multiple	 instances	 of	 particularly	 useful	 patterns	 in	 situ.	Besides	 showing	 a	 good	 canonical	implementation	
that	applies	a	pattern,	most	patterns	could	benefit	from	‘how	to	not	do	it’	code	examples.		

	
So,	is	it	time	for	us	to	stop	writing	patterns?	No,	not	entirely.	
However,	 I	 think	 now	 is	 an	 opportune	 time	 for	me	 to	 step	 away	 from	 cranking	 out	 ever	more	 software	

related	patterns	to	give	myself	the	space	and	time	to	write,	reflect,	and	work	on	the	preservation,	restoration,	
and	promotion	of	 important	software	design	patterns	as	well	as	 identifying	gaps	 that	need	 filling.	This	 is	no	
small	effort.	I	cannot	do	this	on	my	own.		

Will	you	join	me	in	these	endeavors?	We	won’t	know	of	their	impact	unless	we	try.	

6. ACKNOWLEDGEMENTS	

I’d	 like	 to	 thank	my	 shepherds,	 Stefan	Hotel	 and	Michael	 Keeling,	 for	 reading	 early	 drafts	 of	 this	 essay	 and	
prompting	me	to	try	harder	to	come	to	some	conclusions	and	calls	to	action.	I’d	also	like	to	thank	my	virtual	
writers’	workshop	colleagues	 for	giving	me	pointed,	 if	sometimes	conflicting,	advice	on	how	make	this	essay	
more	 cohesive	 and	 compelling.	 In	 particular,	 I	 want	 to	 thank	 Lise	 Hvatum	 as	 well	 as	 Paulo	 Merson	 who	
provided	me	thoughtful	comments	even	after	the	writers’	workshop.	And	finally,	thanks	to	my	supportive	and	
consistently	thoughtful	critics,	Jordan	Wirfs-Brock	and	Allen	Wirfs-Brock.	
REFERENCES	
[AISJFA]	Alexander,	C.,	Ishikawa,	S.,	Silverstein,	M.,	Jacobson,	M.,	Fiksdahl-King,	I.,	Angel,	S.	(1977).	A	Pattern	Language:	Towns,	Buildings,	
Construction.	Oxford	University	Press.	
[AHLSWY]	Acherkan,	E.,	Hen-Tov,	A.,	Lorenz,	D.,	Schachter,	L.,	Wirfs-Brock,	R.,	Yoder,	J.	(2011).	“Dynamic	Hook	Points.”	Proceedings	of	the	
Asian	Conference	on	Patterns	of	Programming	Languages	(AsianPLoP	’11).		
[Arn]	Arnheim,	R.	Visual	Thinking,	(2004).	University	of	California	Press;	Second	Edition,	Thirty-Fifth	Anniversary	Printing.	
[Co05]	Cockburn,	A.	“	Hexagonal	Architecture”	Retrieved	from:	https://alistair.cockburn.us/hexagonal-architecture/	
[Cunn]	Cunningham,	W.		Portland	Pattern	Repository.	Retrieved	from:	http://wiki.c2.com/?WelcomeVisitors		
[Dem]	Demeyer,	S.,	Ducasse,	S.,	Nierstrasz,	O.	(2003)	Object-oriented	Reengineering	Patterns,	Morgan	Kaufman	and	[Website]	open	access	
textbook:	https://open.umn.edu/opentextbooks/textbooks/object-oriented-reengineering-patterns.	
[Evan]	Evans,	E.	(2003).	Domain-Driven	Design:	Tackling	Complexity	in	the	Heart	of	Software,	Addison-Wesley.		
[Foot]	Foote,	B.,	Yoder,	J.		(1997).	“Big	Ball	of	Mud.”	Proceedings	of	the	Fourth	Conference	on	Patterns	Languages	of	Programs	(PLoP	
'97/EuroPLoP	'97).	Also	in	Pattern	Languages	of	Programs	Design	4,	edited	by	Neil	Harrison,	Brian	Foote,	and	Hans	Rohnert.	Addison-
Wesley,	2000.	
[Gamma]	Gamma,	E.,	Helm,	R.,	Johnson,	R.,	Vlissides,	J.	(1995).	Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software.	Addison-
Wesley.	
[Garr20a]	Garrido	de	Paz,	J.	(@JuanMGP).		‘Just	published	an	article	about	the	driven-side	of	#HexagonalArchitecture	(pattern	by		
@TotherAlistairrelated	to	"DDD	Anti	Corruption	Layer".	In	the	links	section	of	the	article	I	also	mention	some	resources	by	@tpierrain	
about	this	topic.’	27	November,	2020,	12:25	PM.	Tweet.	
[Garr20b]		Garrido	de	Paz,	J.	(2020)	‘Hexagonal	Architecture:	The	“Right	Boundary”’	
https://jmgarridopaz.github.io/content/therightboundary.html	
[Garr20c]	Garrido	de	Paz,	J.	“Articles.”	https://jmgarridopaz.github.io/content/articles.html	
[HNSWY10]	Hen-Tov,	A.,	Nikolaev,	L.,	Schachter,	L.,	Wirfs-Brock,	R.,	and	Yoder,	J.		(2010).	“Adaptive	Object-Model	Evolution	Patterns.”	
Proceedings	of		the	8th	Latin	America	Conference	on	Pattern	Languages	of	Programs	(SugarLoaf	PLoP	’10).	



Should	we	stop	writing	design	patterns?					Page	-	11	
 

    

[HLNSWY10]	Hen-Tov,	Lorenz,	D.,	A.,	Nikolaev,	L.,	Schachter,	L.,	Wirfs-Brock,	R.,	and	Yoder,	J.		(2010).	“Dynamic	Model	Evolution.”	
Proceedings	of	the	17th	Pattern	Language	of	Programing	Conference	(PLoP	’10).		
[HW15]	Hvatum,	L.	and	Wirfs-Brock,	R.	(2015).	“Patterns	to	Build	the	Magic	Backlog.”	Proceedings	of	the	20th	European	Conference	on	
Pattern	Languages	of	Programming	(EuroPLoP	’15).	
[HW17]	Hvatum,	L.	and	Wirfs-Brock,	R.		(2017).	“Pattern	Stories	and	Sequences	for	the	Backlog:	Expanding	the	Magic	Backlog	Patterns”.	
Proceedings	of	the	24th		Conference	on	Pattern	Languages	of	Programming	(PLoP	’17).	
[HW18]	Hvatum,	L.	and	Wirfs-Brock,	R.	(2018).	“Program	Backlog	Patterns:	Applying	the	Magic	Backlog	Patterns”.	Proceedings	of	the	23rd	
European	Conference	on	Pattern	Languages	of	Programming	(EuroPLoP	’18).	
[Jack]	Jackson,	M.	(2001).	Problem	Frames:	Analyzing	and	structuring	software	development	problems,	Addison-Wesley.	
[Pier]	Pierrain,	T.	(2020,	November	29).	Hexagonal	or	not	Hexagonal?	use	case	driven.	https://tpierrain.blogspot.com/2020/11/hexagonal-
or-not-hexagonal.html	
[Rhod]	Rhodes,	B.	Python	Design	Patterns.	(April	2020).	Retrieved	from:	https://python-patterns.guide.	
[Thom]	Thompson,	J.	Gang	of	Four	Design	Patterns.	(April	2020).	Retrieved	from:	https://springframework.guru/gang-of-four-design-
patterns/	
[Wirf90]	Wirfs-Brock,	R.,	Wilkerson,	B.,	Wiener,	L.	(1990).	Designing	Object-Oriented	Software.	Prentice	Hall.	
[Wirf92]	Wirfs-Brock,	R.		(1992)	“Characterizing	Your	Objects.”	The	Smalltalk	Report,	Vol.	2,	Number	5.	
[Wirf06}	Wirfs-Brock,	R.	(2006).		“Characterizing	Classes.”	IEEE	Software	Design	Column,	Vol.	23,	Number	2.	
[WH16]	Wirfs-Brock,	R.,	Hvatum,	L.	(2016).	“More	Patterns	for	the	Magic	Backlog.”	Proceedings	of	the	23rd	Conference	on	Pattern	
Languages	of	Programming	(PLoP	’16).	
[Wirf17]	Wirfs-Brock,	R.	“Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?”	(2017).	Proceedings	of	the	24th	
Conference	on	Pattern	Languages	of	Programs	(PLoP'17).	
[WH18]	Wirfs-Brock,	R.,	Hvatum,	L.	(2018).	“Even	more	Patterns	for	the	Magic	Backlog.”	Proceedings	of	the	25th	Conference	on	Pattern	
Languages	of	Programming	(PLoP	’18).	
[WH19]	Wirfs-Brock,	R.,	Hvatum,	L.	(2019).	“Who	Will	Read	My	Patterns?	On	Designing	a	Patterns	Book	for	Targeted	Readers.”	
Proceedings	of	the	26th	Conference	on	Pattern	Languages	of	Programming	(PLoP	’19).	
[WK]	Wirfs-Brock,	R	and	Kohls,	C.	“Elephants,	Patterns,	and	Heuristics.”	(2019).	Proceedings	of	the	26th	Conference	on	Pattern	Languages	
of	Programming	(PLoP	’19).	
[WM]	Wirfs-Brock,	R.,	McKean,	A.		(2002).	Object-Oriented	Design:	Roles,	Responsibilities,	and	Collaborations.	Addison-Wesley.		
[WTN]	Wirfs-Brock,	R.,	Taylor,	P.,	Noble,	J.		(2006).	“Problem	Frame	Patterns:	An	Exploration	of	Patterns	in	the	Problem	Space.”	
Proceedings	of	the	13th	Pattern	Language	of	Programs	Conference	(PLoP	’06).	
[WY]	Wirfs-Brock,	R.,	Yoder,	J.	(2012).	“Patterns	for	Sustainable	Architectures.”	Proceedings	of	the	19th	Pattern	Languages	of	Programs	
Conference	(PLoP	’12).	
[WYG]	Wirfs-Brock,	R.,	Yoder,	J.,	Guerra,	E.	(2015).	“Patterns	to	Develop	and	Evolve	Architecture	During	an	Agile	Software	Project.”	
Proceedings	of	the	22nd	Pattern	Languages	of	Programs	Conference	(PLoP	’15).	
[WYW07]	Welicki,L,	Yoder,	J.,	Wirfs-Brock,	R.	(2007).	“Rendering	Patterns	for	Adaptive	Object	Models.”	Proceedings	of	the	14th	Pattern	
Language	of	Programs	Conference	(PLoP	’07).	
[WYW08]	Welicki,L.,	Yoder,	J.,	Wirfs-Brock,	R.	(2008).	“The	Dynamic	Factory	Pattern”	Proceedings	of	the	16th	Pattern	Language	of	
Programs	Conference	(PLoP	’08).		
[WYW09]	Welicki,L.,	Yoder,	J.,	Wirfs-Brock,	R.	(2009).	“Adaptive	Object-Model	Builder.”	Proceedings	of	the	16th	Pattern	Language	of	
Programs	Conference	(PLoP	’09).	
[YWA2014]	Yoder	J.,	Wirfs-Brock	R.,	Aguilar	A.	(2014).	“QA	to	AQ:	Patterns	about	transitioning	from	Quality	Assurance	to	Agile	Quality.”	
Proceedings	of	the	3rd	Asian	Conference	on	Patterns	of	Programming	Languages	(AsianPLoP	’14).	
[YW2014a]	Yoder	J.,	Wirfs-Brock	R.	(2014).	“QA	to	AQ	Part	Two:	Shifting	from	Quality	Assurance	to	Agile	Quality.”	(2014)	Proceedings	of	
the	21st	Conference	on	Patterns	of	Programming	Language	(PLoP	’14).	
[YWW2014b]	Yoder	J.,	Wirfs-Brock	R.,	Washizaki	H.		(2014).	“QA	to	AQ	Part	Three:	Shifting	from	Quality	Assurance	to	Agile	Quality:	
Tearing	Down	the	Walls.”	Proceedings	of	the	10th	Latin	American	Conference	on	Patterns	of	Programming	Language	(SugarLoafPLoP	’14).	
[YWW2015]	Yoder	J.,	Wirfs-Brock	R.,	Washizaki	H.	(2015).		“QA	to	AQ	Part	Four:	Shifting	from	Quality	Assurance	to	Agile	Quality:	
Prioritizing	Qualities	and	Making	them	Visible.”	Proceedings	of	the	22nd	Conference	on	Patterns	of	Programming	Language	(PLoP	’15).	
[YWW2016a]	Yoder	J.,	Wirfs-Brock	R.,	Washizaki	H.	(2016).	“QA	to	AQ	Part	Five:	Being	Agile	at	Quality:	Growing	Quality	Awareness	and	
Expertise.”	Proceedings	of	the	5th	Asian	Conference	on	Patterns	of	Programming	Language	(AsianPLoP	’16).	
[YWW2016b]	Yoder	J.,	Wirfs-Brock	R.,	Washizaki	H.	(2016).	“QA	to	AQ	Part	Six:	Being	Agile	at	Quality:	Enabling	and	Infusing	Quality,”	
Proceedings	of	the	24th	Conference	on	Programming	Patterns	of	Programming	Language	(PLoP	2016).	
[ZPLZSa]	Zimmerman,	O.,	Lübke,	D.,	Zdun,	U.,	Pautasso,	C.,	Stocker,	M.	(2020).	Interface	Responsibility	Patterns:	Processing	Resources	and	
Operation	Responsibilities.	Proceedings	of	the	European	Conference	on	Pattern	Languages	of	Programs	2020	(EuroPLoP	’20).	
[ZPLZSb]	Zimmerman,	O.,	Lübke,	D.,	Zdun,	U.,	Pautasso,	C.,	Stocker,	M.	 (2020).	Data-Oriented	 Interface	Responsibility	Patterns:	Types	of	
Information	Holder	Resources.	Proceedings	of	the	European	Conference	on	Pattern	Languages	of	Programs	2020	(EuroPLoP	’20).	
[ZSLZPa]	 Zimmerman,	 O.,	 Stocker,	 M.,	 Lübke,	 D.,	 Zdun,	 U.,	 Pautasso,	 C.	 Microservice	 API	 Patterns.	 (December,	 2020)	 Retrieved	 from:	
https://microservice-api-patterns.org/.	


